The Long-Term Effect of

Bariatric/Metabolic Surgery
 Versus Pharmacologic Therapy in
 Type 2 Diabetes Mellitus Patients

A Systematic Review and Meta-Analysis

Presented by: Zahra Karimi Zadeh

Background on Type 2 Diabetes Mellitus (T2DM)

Prevalence

Over 420 million people worldwide

Standard Treatment

Pharmacologic therapy and lifestyle changes

Objective of the Study

Objective

Compare long-term outcomes of bariatric surgery vs. pharmacologic therapy

Outcomes

Diabetes remission
 Complications (microvascular, macrovascular)
 Mortality

Study Design & Methodology

Systematic Review & Meta-analysis

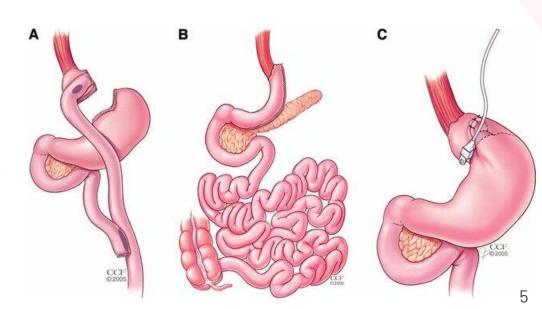
Databases

Number of Studies and cases

PRISMA guidelines

PubMed Embase Cochrane Web of Science 13 eligible studies (RCTs and cohort studies)

From 2014 to 2021


n = 68,280 patients

Bariatric Surgery Procedures Reviewed

Common procedures:

- Roux-en-Y gastric bypass
- Sleeve gastrectomy
- Gastric banding

Bariatric surgery recognized for treating obesity and T2DM

Characteristics for included studies

Author, year	Countrie s	Ethnicit y	Study design	Surgery types		Outcomes	Follow- up (years)	Sampl e size	BMI at baseline (kg/m²)	Age baseline (years)	at
Sjöström L, 2014(28)	Swedish	NA	Prospective cohort	AGB NGB VBG or G	or or iB	Diabetes remission, microvascular complications, macrovascular complications	15	603	40(C) 42.1(S)	50.4(C) 48.7(S)	
Hsu CC, 2015(29)	Taiwan	Asian	Retrospective cohort	LSG or G	В	Diabetes remission	5	351	29.1(C), 31.0(S)	51.2(C) 44.2(S)	
Schauer PR, 2017(30)	US	Mixed	RCT	RYGB LSG	or	Diabetes remission	5	150	36.4(C) 36.5 (S)	49.7(C) 48.1(S)	
Adams TD ,	US	NA	Prospective cohort	RYGB		Diabetes remission	12	212	>=35(all)	-	
Ikramuddin S, 2018(32)	US and Taiwan	Mixed	RCT	GB		Diabetes remission	5	120	34.4(C) 34.9(S)	48(C) 49(S)	
Mingrone G, 2021(33)	Italy	NA	RCT	RYGB BPD	or	Diabetes remission	10	60	>=35(all) 45.4(C) 44.4 (S)	43.3(C), 43.3(S)	6

Author, year	Countrie s	Ethnicit y	Study design	Surgery types	Outcomes	Follow- up (years)	Sampl e size	BMI a baseline (kg/m²)	at Age baseline (years)	at
Johnson, BL. MS , 2013(34)	US	Mixed	Retrospective cohort	RYGB or AGB or VBG or BPD or SG	Microvascular complications, macrovascular complications	5	15951	≥ 35(all)	52.1(C) 47.5(s)	
O'Brien R, 2018(35)	US	Mixed	Retrospective cohort	RYGB or SG or AGB	Microvascular complications	5	15083	43.8 (C) 44.9 (S)	48.7(C) 47.6(S)	
Madsen LR, 2019(36)	Danish	NA	Retrospective cohort	RYGB	Microvascular complications, macrovascular complications	5.3	2185	>35	47.1(C) 46.8(S)	
Fisher DP, 2018(37)	US	Mixed	Retrospective cohort	RYGB or SG or AGB	Macrovascular complications, mortality	5	20235	43.8(C) 44.7(S)	50.2(C) 49.5(S)	
Aminian A, 2019(38)	US	Mixed	Retrospective cohort	RYGB or SG or AGB or DS	Macrovascular complications, mortality	8	13722	42.6(C) 45.1(S)	54.8(C) 52.5(S)	
Pontiroli, A. E., 2016(39)	Italy	NA	Retrospective cohort	LAGB	Mortality	15	1066	> 35(all) 51.9(C) 49.9(S)	41.9(C) 43.0(S)	
Eliasson B, 2015(40)	Sweden	NA	Retrospective cohort	RYGB	Mortality	8	12264	41·4(C) 42·0(S)	50·5(C) 48·5(S)	7

Diabetes Remission - Definition

HbA1c

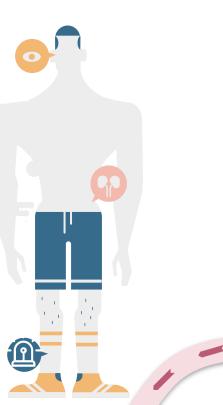
HbA1c < 6.5% without medication

FBS

Fasting Plasma Glucose < 100-125 mg/dL without medication

Long-Term Diabetes Remission Rates

 Bariatric surgery significantly improves remission (OR = 8.39, 95% CI: 3.58-19.67, P<0.001)


- Subgroup analysis:
 - RCTs: OR = 4.02, 95% CI: 1.80-8.96
 - Cohort studies: OR = 13.62, 95% CI: 3.95-46.99

Microvascular Complications Overview

Includes nephropathy, retinopathy, and neuropathy

Strong correlation between glycemic control and incidence

Impact on Microvascular Complications

- Bariatric surgery reduced microvascular complications (HR = 0.43, 95% CI: 0.37-0.49, P<0.001)
- Fixed-effects model due to low heterogeneity

Macrovascular Complications Overview

- Includes coronary artery disease (CHD), peripheral artery disease (PAD), and cerebrovascular disease
- Leading cause of death in T2DM patients

Impact on Macrovascular Complications \

• Reduced incidence of macrovascular complications after surgery (HR = 0.60, 95% CI: 0.48-0.75, P<0.001)

All-Cause Mortality in T2DM Patients

 Long-term mortality reduced significantly in surgery patients (HR = 0.44, 95% CI: 0.37-0.49, P<0.001)

Publication Bias & Sensitivity Analysis

 Funnel plots show no significant bias in diabetes remission, microvascular complications, macrovascular complications, or mortality

Bariatric Surgery Mechanisms

- Improves glucose metabolism by altering gut hormones (GLP-1, GIP)
 - Weight loss-independent effects, including changes in bile acids, gut microbiota

Challenges and Relapses

- Diabetes remission may relapse over time (19% relapse after 3 years)
- Adverse effects: anemia, hypoglycemia, perioperative complications

Limitations of the Study

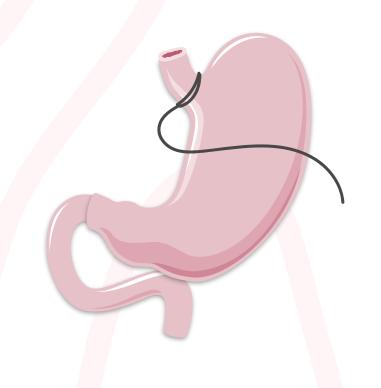
- Most included studies were observational (potential biases)
- Small sample sizes in RCTs
- Lack of uniformity in defining diabetes remission

Future Research Recommendations

- Need for more high-quality RCTs with long-term follow-ups
- Evaluate mechanisms behind metabolic surgery impact on T2DM

Key Takeaways and Conclusion

Diabetes Remission: Surgery is 8 times more likely to result in long-term remission than medication.


Complications:

57% lower risk of microvascular complications 40% lower risk of macrovascular complications

Mortality:

56% lower risk of death with bariatric surgery.

Key Takeaways and Conclusion

- Bariatric surgery is highly effective for long-term diabetes management, especially for people with obesity and uncontrolled diabetes.
- Surgery should be considered earlier in treatment plans for severe cases.
- Guidelines might need to be updated to include bariatric surgery as a key option.